If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2-10t-2.5=0
a = 10; b = -10; c = -2.5;
Δ = b2-4ac
Δ = -102-4·10·(-2.5)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{2}}{2*10}=\frac{10-10\sqrt{2}}{20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{2}}{2*10}=\frac{10+10\sqrt{2}}{20} $
| 2600+450x=10000 | | 2n=6+22 | | n×3=45 | | 3a+30=150 | | 7q+8=2q-2 | | 8x=64/2 | | 3y+3y=3 | | 8x=64/³ | | 3m=18/2 | | d2+4d+7=0 | | 3/x=9/W | | 0.5x^2+0.6x=0.8 | | 0,2x-12=16 | | 3(2y-1)-1=4(y+1)+2 | | 9=5w+1 | | 5h+11=41(H | | 8*9=6k | | 28y=54+y | | 9a+12a=-15a | | 2(p+8)=10 | | 5x−10=3x+1 | | 8(3x+2)/2=32 | | F2+3f-10=0 | | Y=4^2-4x | | 12×2+7+2x=35 | | 3x=x+33-5 | | 56=x+5x+x+7 | | x+12=5x-3x | | -3(2x+1)=22 | | 51/11+y=5 | | 4z+8=10z-10 | | 8*(3x+2)/2=32 |